Vol. 1, No.4
Summer, 1990

J.Sci.I.R.Iran

'THE POMERON IN A MODIFIED
MULTIPERIPHERAL MODEL

K. Seyed - Yagoobi

Department of Physics, Faculty of Science, University of Tabriz, Tabriz, Islamic Republic of Iran

Abstract

There have been many attempts [1-3] to produce correct pomeron by putting the n-
particle production amplitude expAt, in the unitarity integral equation. It was found
that for reasonable values of A one could not get the right picture of the slope of the
pomeron as a function of energy S* . We show that theinterference termsin the unitary
equation does not improve the slope either. However, a modified multiperipheral

model predicts a correct pomeron.

1. Introduction

- Since theko‘rig‘inél paper of Michejda, T ufnau and
Bialas [4] there have been many discussions of whether

the multiperipheral model of particle production gives, -
through unitarity, the correct t-dependence of elastic

scattering (Fig 1). The situation is best summed up in
the article of Teper [S]wherereferencesto earlierwork
may be found. Teper once again finds that the
predicted radius is too small in the lower energy region
and rises too rapidly as a function of energy compared
to experiment.

The input to the modelisshown inFig. 2, where the t-
dependence arises from a factor exp(A t;) associated
with each internal line. The value of A can be found by

comparing with experimental §" distribution in inclu-

sive processes. The other parameter required ismassof
- the produced objects and their multiplicity. If we
assume that they are pions then the mass is known and

we can read the multiplicity directly from experiment.

However, it is well known that studies of correlation
require the production of cluster decaying into several

pions, so it is necessary to assume a value of the cluster -

mass and the average multipicity of each cluster.

In the next section we caiculate the average number
of clusters at each energy and estimate the value of A
from data on §f distribution. This permits us to
calculate the effective t-dependence of elastic scatter-
ing as a function of energy.
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2. The Cluster Model

2.1 Determination of number of particles per cluster

OVERALL

Let us put the problem in a slightly different way and
ask the following question: What is the adequate
energy to produce nclusters? Had there been just one
particle per cluster, the calculation of energy would
have been easier*

S = A exp ({(n-a)/3a)

where a and b are'the coefficientsin<n>=alnS+ b
and A = exp{(-b/a). a = 2 (or 0) if initial particles have
positive (or zero) overall charge. It is, however,
unlikely that- this situation would occur. Thus, to
determine the average number of (negative) particles
we introduce the following method. Using charge
conservation law for, e. g. n, = 3in PP scattering case, .
we see that the only possible formationlikelytohappen
is :

CLUSTER CLUSTER = CLUSTER
ONE TWO THREE

+ + 0

CHARGE

Bearing in mind that the clusters can decay in such a
way that each of them preserves the charge conserva-
tion law, one can write the following possible decay
modes for the example mentioned above:

“ Here we assume that there are asmany neutral particles available as
positive or negative ones.
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where the numbers (= P,) are to serve the weighing
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purpose. The calculation of energy is straightforward

now:
3 Pn;

S=Aexp —
cl

with A asdefined above. For the e tample under study, -

using [6]
<n >=.84InS-2.14

P P
~ o~k
P P
Figure 1 Unitarity integral equation
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Figure 2 Multiperipheral Model of particle production
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2.2 On the value of A

A is the parameter which governs the t-distribution of
the amplitude, exp A t. We fit the data [7] namely
transverse momentum distribution, for the energies
calculated at 2.1. The best fits, due to error bars, give a
range over A (Fig 3): 3.7 < A< 4.4. These valuesshould
be regarded as the lowest limits of A. The reason is that
the cutoff of G distribution, when dealing with
particles, is sharper than that of the gy distribution in
the cluster case.

It is well known that for small momentum transfer t,
one can parametrize the differential cross section as
do/dt exp (-At/4). This, together with the optical

theorem,
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Im T°(S,0) = S 0,,,(S)
gives
Im T9(S,0) « exp(-At/4).

Transforming the equation to the impact parameter
space b, we get
Im T%(S,0) « exp(-b?/R?),

where the ‘radius’ R isin general a function of energy:
R = R (8S). See the appendix for details. The aim of the
paper is to see how the radius behaves as compared to
data. InFig4we plot R?versus S. Wesee that the theory
does not quite match with the experiment. Of course by
choosing smaller values for A, one can have a better
slope, similar to the one in data, but with alower lying
trajectory instead.

In the next section we shall see to what extent the
inclusion of the crossed diagrams would effect the
radius.

" 3. The Interference Diagrams

It has usually been the case that people make the
assumption that the interference terms contribute to
the calulations negligibly therefore they are discarded
completely. The supporting argument is that graphs
with crossed lines have larger t values than the no
crossed ones hence because of the sharp cutoffintthey
are damped. This argument does not, however, show
that evenif a single crossed line graph is small, the sum
of all of them would be small too; since there are so
many of them. Despite this argument there have been
several attempts to consider the interference diagrams
in different multiperipheral models [2, 5, 8, 9].

Now that we have developed a method such that
every individual diagram could be calculatéd separate-



Vol.1,No.4

S‘ummer, 1990 Seyea-Yagoobi J.Sci. LR Iran
2
d*0/dg,
100
data
~~~~~ theory
S =810 Gev?
P+PwunP+ X
10
4L
.1 1 1 ‘ L 1 I 1. 2
0 1 2 3 4 5 6 r

Figure 3 Transverse momentum distribution

ly (see egs. A7, A8and A9), we turnto its application, ‘

To cut down the computer time and since omission of

some diagrams such as those in figure 5 is justified

“according to the results we get from the numerical

' up to 30% contribution to the slope from the crossed

~diagrams in reference 2.

calculatxons, we have reduced the number of diagrams
aortespondmg to3,4andSintermediatestatesto28out

of possxble 150 ones. These diagrams are shown in Fig
6. Of course some diagrams, by way of symmetry, are
'representatwes of two or four terms. Hence, in actual
fact, we are dealing with some 65 terms.

Takxng the mterference diagrams into account we f

arrive at Flg 7, where we conclude that their contribu-
tion is so little that as far as R?is concerned, one could
neglect them all.

‘The parameter A playsacrucialrolein the evaluation
of the importance of the crossed diagrams. This seems;
to be part, if not all, of the reason for the conclusion of
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‘where t, =

4. The Modified Multiperipheral Model
The proposed link dependent model has the form

Q] The parameters have already been
defined in Fig 2. Equation 1 shows a correlation
between every other neighbour. Terms of the form
Q;Q;,, introduce nothing new [10]:

(Q,' = Qm)2 =

2
Gj+1

20 Q]+l + Q + Qj+1
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Figure 4 Dependence of Ron §

where Sy, being a constant, is the prong mass squared.
Hence

Q,Q,-+1 = i(Qf"’ Q;l+1 - SO)

On the grounds that sz type terms have already been
considered (see section 3) Q;Q;4, can be discarded.
Therefore we arrive at Q;Qj+2. Let us write Qj,, in
terms of Q;

Qj+2= Q;-(qjs1 + Qj42)-

()
But
Qi1 + Q2 = (G4 + G4, NGj1 + qja) — (ijTﬂ +
T X, X, -
942" = [So(2+ —XL 4 702 ) — (jSl +
j+2 X1
dje2)]"2.
Since X,/ X;= $"'=) hence
+ 2T =T
Gj+1 + Qjrova— E(‘l,’n +qj42) (3)

where
a= S, 2+ s + Sti—m)i2

and Q; is the square root of eq A3. The exponentineq 1
now becomes

12
={—A—19S, £—7So £+ Sim—1 4 S1/1—n)1/2!}

i ‘
FYN 3
H; (glqr)z-f- yfi
=L 22+ S 4 sty

T T
(Gj+1 + qj40)* =

L T
F,+F, 4)
where L and T stand for longitudinal and transverse
parts of the exponent respectively and

n J
£=C, X)E X
7(2 + Sl/n—l + sl/1~n)1/2
2 61/2
i

The (extra) terms indicated in brackets in eq. 4 must be
added to eqs A4 and A14. The rest of the calculations

. will be the same and in fact the end result will look like
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eq. Al8.
To compare the radius with data, we must assign first
a value to A and . This is done in Fig 8. where we have
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B Fignreys Different imc‘rfcrence diagrams

- :plotteddzﬂ'/quzversus 4,2 Wefind A = 2.6and y=-2.
L Flgure 9 shows the matching of the theory with -

_%L—
n=$

o L i,
 =(P,-29) = (B}-2d) (B;-2G)- @ dn)
, i=1 sl =1 i=1
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ones, together with the unitarity equation for the
elastic amplitude results on

4k a®)= ﬁr {d%dY,}a@q,)a(EE V6) 89 (£6))
5 (b- z--‘—*-‘-S){A G, OF

(A2)
where the rapidity is defined by
‘ ‘Ej+qt
Y=,
E;-q"

" and P is the centre of mass momentum (S~ 4 P?). As

_ experiment, where the variation of R?, oralternatively . -

the slope of the pomeron, against S is shown.

In conclusion, the agreement of the energy depen-
Using the momentum conservation, L

. dence of the radius with experiment over a big rangeof -

o energy is a support to the proposed model.
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Q@ =8§,.

=G (qa Eq,) (E q,)2 (A3)
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~_ An important property of the cdmponents qt is that
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~ Appendix '

Conmder the process A+B——s1+2,.

.,n.The

: '.outgomg pamcles will have energies E;, longitudinal =
momenta q;* and transverse momenta q;". Following -
ref. 3, we consider the corresponding impact parame-

A (b,, q,L) f it dz ¢@B]A @G, ) 5"’(2 6"")

. ters of the outgoing particles, b, as the conjugate ..
o vanabies of the transverse momenta qJ , with

(A1) ﬁ

" whxch dxffers from an ordmary Fourier transformatlonf.

e just by a momentum conservation delta function.
| Separation of transverse kinematics from Iongltudmai’ .
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under Lorentz transformation along the Iongxtudmal
directions they transform like

qt ——metP gt

‘so that their ratios will be invariant under these
transformations. ‘
Al.a The longitudinal calculation

We shall not consider the transverse part of the

- equation A3 for the time beingand shall deal withitin
Al:b. There, Eq.A3,q,(=E .-q.L)issmallsothatwith
a very good approxlmatlon we can write it as

t=-S. (2 X)(E x,) (A4)

i=j+l
where we have defined X; = q, We shall defme the
matnx M,, by the following equation,
.zltj =-.8, Mig XX (i = 1,..0,m) - (AS)
l==
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Figure 6 Different interference diagrams

M; is an n by n matrix whose diagonal is zero and can
easily be calculated

00...0

10...0
'_ 1 210.0

n-1..0

Asthe imaginary part of the amplitude depends on the
square of the amplitude, there shall be another t-
dependence in the exponent which may conveniently
be written as

313

3 a 2 _1 . .
26=-8 M;X;X;;(i,j=1,...,n)

1
=1

(A6
where M?of A6ingeneral will be a permutationof M!ii
AS, co S
M= TM (A7

We define a new matrix M as the sum of these twi
matrices, i

Tl 1 2 .
Therefore . ‘
ACH+26)=-1S, M; X, X; (A9
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Figure 7 Variation of R? with S; interferences included

is the exponential of the amplitude squaredin A2,
Realizing that dY; = dX/X;, we can write the
longitudinal part of the equation A2 in the following
form

L= 'n[1 i Jexp(-AS, M; XX)3(/5- 3X)5(5-3
_wl- B
_Se

X

Defining a new dimensionless variable z; in place of X
by z, = X/S.!, we get
G0

L=fﬁ{ dzfi ]exp(-ASoMijZiZJj)s —-g—o—-EZj)S
-0
( _g_o_ -37Z) (A10)

Unfbrtunately there seems to be no exact analytic way
of doing this integral. So to proceed, we maximize the
exponential by those z;, say z°, which minimize M,Jz,zj

z,=2°+ g

and keep only the terms which are of the order of gor £2.
z,° are subject to the two constraints which areimposed
by the two delta functions of A10. Hence,

314

S(Gev?)

1000

L= T[[Z"] exp(-AS, M,,ZZ

j=1

Zij & 8,') 5 3,') 3

where

1) f T [ds]exp(-ASo

£
ZJ.'Z)’

=3 0~-2
o C 4
Zij siGj = M” Zi Z’ €j - Mlj Z] Ei Ej .
Note that the terms linear in &,, because of the choice of
the z°, cancel. Writing the delta functions in their

integral form, we get

n o o _o-l
L =T (Z) exp (-45. My ZZ)

[dkdl Tid elexpfi(k + Zl'2 )&,-AS, Z;&¢].
o (A11)
The g, integration gives
n/2 o7 -1 )

7 €Xp(-AS, M;Z; Z) J 1
dkdle Z,

T sy ae Z Tz xpl- 4,\s j
(kL) (ko —)] (A12)

i ]
* Proceeding from All to A12 we have assumed that Z is not a
singular matrix. If it were. singular, there would have becn a
madification in the denominator of the second fraction in A13,
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Figure 8 Plot of d* 0/dq.” versus q;* in order to assign values for
Now doing the k and | integration one concludes that the transverse part of the amplitude,
2mexp(-AS M, Z; Z1) . n i
L Sl e i RS S A@H =T expl-AE 47, (A14)
(Asoﬂ'—l) - det Z ]T[Zlo] (4F1F2 - r3 )1/2 J=1 i=f

(A13)
where
[=-— 371
b4, 7T
= -2
T, 4)¢S 32,'2Z,
N=——3Z(Z2+Z?)

AS,

L weighs different interference diagrams and as we
shall see later, it appears as a coefficient in the term
which includes the radius.

A. 1. b The radius

Having dealt with the longitudinal part of the
amplitude we shall discuss the transverse part here,
The procedure will be more or less as before. We are
mainly concerned with the term which we suppressed
in A3, namely, t,7 = - (£' ;")%, which corresponds to

As before let us define an n by n and symmetric matrix
L-l- by the following equation,

AT~T

LU q; q] _2 (2 qln)z

The amphtude, now, looks like,
A@") =exp(-AL; §7q).

One can transform this to the E space using equation
Al

4 7

K 6 = - _ 1 “1 .s.' .;'
( J) (A/ﬂ)n-l detLl(anl'lij) exp(i 3 BU bl b])
ij=1 .
where
1 1 . 1 A :
LY
and
Jo=1, ¥rs=1
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Figure9 Variation of R?with S as predicted from the modified model

Matrix B! is n by n and symmetric.

Let us rewrite the transverse part of equatlon A2
m
@n s 2
T(b) H [db]&(z1 b) 8(b-ZX; b))IA (b, )|
=
. -oo

Al6

Once more we need to permute A 14

B2= T(B)

and

Bij = Blij + Bzij.

Hence R

I& (B = h, exp (- A" B b, b),

where, 4 ;

hy=—18T (5, I} )detL! detL?]"

(Mﬂ,)2(n-l)
Bj; is an n by i symmetric matrix. It could be, and in

most cases is, singular. In what follows we shall assume
that it is singular. The nonsingular case could be
proceeded likewise. The fact that B;; is singular does
not mean that the integral A16 will be divergent at all.
The reason for this is the existence of the delta
functions. This makes it possible to get rid of the zero
eigenvalues corresponding to matrix B as explained
below. Writing the delta function of A16 in its integral
form we get,
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i
1000  S(Gev)

[+ <]

T (b)=h, f d’x d? exp (iy. b) H[dzb exp(i(X-X.Y).

-Q0

f;i)] exp (- A" B;; 55,)

T(b) = h, f d2x Py exp (iy.B) 89 (X - —=Cin Xi__
X Cin

exp [- A Fy (X - X Y)(X - X)),

where

hy =y ()™ [ T (A (2" I,

and C;; is the matrix which diagonalizes B;; to produce
the eigenvalues A;. The detailsof integrationover b;is at
the end of this section where F;; is also defined. Using
the delta functionone can easily do the integrationover
i’ N

T(b) = h, fsz exp (iy.b) exp (- A 8Y)?,

where

o= 3 Fy (r-X) (v-Xy),

ij=1
and | a
Y= (2 Cin XI) / (21 Cin)'
i=t i=1
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One, therefore, finally ends up with I= / dzb::n exp (i &,. 'g“n) ]I[dzb exp (i &, i‘;)] ex
- —‘2 b -
¥6) = ——exp (- — ). A7 .,
(-3 b, ),
The radius is customarily defined according to
where
A
R’=41¢ A18 v O
wij = A, .
O . An-l
* %k Xk
The evaluation of first and second integral is ea
In this part we would like to evaluate the following enough,
integral, N
W .= . | T 6‘2’(arn)exp[--——1251 a”).
T [d°b;exp (i a;. b)] exp ('Bij bb), det ¢
o Puttmg back & in & form, we get
where Bj; is a symmetric and singular matrix. LetCbe [=_—T" 52 (E C,. &) exp [___ ot __ (2 C; a)
the matnx which transforms B to D, where D is ‘ d tg n i—l A =1
diagonal, This s the result, but tomake it look more elegantlet:
- (CTB Oij - define a new n by n symmetric matrix, F;;, by
Put _ N Moo
Ve . I Fii"*‘"i='4l_~-_)i(2_ Ci @)’
bi = 2 C)‘ b] i.e- (bl = Cbl) i=1 -
! then
and -
a =Ca. [=—"— 8 (2 Cinaip) exp [- Fj & &].
Since ~ , oA
B; b b = D;; b;b;
and
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